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Abstract

Despite decades of development, Lagrangian hydrodynamics of
strength-free materials presents numerous open issues, even in one
dimension. We focus on the problem of closing a system of equations
for a two-material cell under the assumption of a single velocity model.
There are several existing models and approaches, each possessing dif-
ferent levels of fidelity to the underlying physics and each exhibiting
unique features in the computed solutions. We consider the case in
which the change in heat in the constituent materials in the mixed cell
is assumed equal. An instantaneous pressure equilibration model for a
mixed cell can be cast as four equations in four unknowns, comprised
of the updated values of the specific internal energy and the specific
volume for each of the two materials in the mixed cell. The unique
contribution of our approach is for the non-instantaneous pressure re-
laxation case. We present a physics-inspired, geometry-based model in
which the updated values of the sub-cell, relaxing-toward-equilibrium
constituent pressures are related to a local Riemann problem through
an optimization framework. This approach couples the modeling prob-
lem of assigning sub-cell pressures to the physics associated with the
local, dynamic evolution. We package our approach in the framework
of a standard predictor-corrector time integration scheme. We quan-
tify the results of our model for idealized, two material problems using
either ideal-gas or stiffened-gas equations of state.

1 Introduction

Multimaterial Lagrangian hydrodynamics of strength-free materials contin-
ues to present numerous open issues, even in one dimension. We focus on
the problem of closing a system of equations for a two-material cell un-
der the assumption of a single velocity model. We treat the constituents
in these multimaterial cells as distinct, i.e., we do not consider so-called
“mixture” models, often associated with multi-phase flow, in which the in-
dividual species in a computational zone are modeled as fully or partially
intermingled. The unmixed, multi-material cells we consider invariably arise
in multi-material Arbitrary Lagrangian-Eulerian (ALE) methods, where the
results of Lagrangian hydrodynamics are projected onto a new mesh during
the remap phase.

We consider three main design principles that govern closure models of
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interest. The first principle is preservation of contacts; this implies that if
all materials in a mixed cell are initially at the same pressure, then that
pressure does not change due to the closure model. The second principle
is that of pressure equilibration; that is, after some transition time (possi-
bly only a single timestep), all pressures in the mixed cell equilibrate. The
third principle is the exact conservation of total energy. As elements of such
models, we assume that a separate set of material properties is maintained
for each material in every multimaterial cell, together with the materials’
volume fractions, which can be used to reconstruct material interfaces inside
a mixed cell. The main challenge is to accurately assign the thermodynamic
states of the individual material components together with the nodal forces
that such a zone generates, pursuant to our design principles and despite a
lack of detailed information about the velocity distribution within such cells.
In particular, for the calculation of both the equation of state (EOS) and the
resulting pressure forces, it is important that the calculation of the internal
energy be accurate.

There are several existing models for this problem. In one class of meth-
ods (see, e.g., Barlow [4], Delov & Sadchikov [9], Goncharov & Yanilkin [11]),
one estimates the velocity normal to the interface between materials and then
approximates the change in the volume for each material, with internal en-
ergy updated separately for each material from its own p dV equation. A
common pressure for a mixed cell, which is used in the momentum equa-
tion, is computed using the equation of total energy conservation. Delov
& Sadchikov [9] and Goncharov & Yanilkin [11] introduce an exchange of
internal energy between the materials inside a mixed cell, thereby allowing
some freedom in the definition of the common pressure. Other multi-material
models impose either instantaneous pressure equilibration (such as that of
Lagoutière [15] and Després & Lagoutière [10]) or ascribe an implicit mech-
anism for pressure relaxation (such as described by Tipton [26] and summa-
rized by Shashkov [24]).

We restrict our attention to the approach in which the change in heat in
the constituent materials in the mixed cell is posited to be equal, as discussed
by Lagoutière [15] and Després & Lagoutière [10]. Under this assumption, the
mixed-cell model can be cast as four equations in four unknowns, consisting
of the updated values of the specific internal energy and the specific volume
for each of the two materials in the mixed cell. A solution to this set of
nonlinear equations can be obtained, e.g., with Newton’s method, which
forms one element of an overall predictor-corrector scheme for solving the
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governing conservation laws.
An unsatisfactory aspect of this model, however, is the imposition of in-

stantaneous pressure equilibration among the mixed-cell constituents. We
break this assumption using a sub-cell dynamics model based on a local Rie-
mann problem. Specifically, the unique contribution of our work is the use of
this physics-inspired, geometry-based approach using an optimization frame-
work to both (i) to break instantaneous pressure equilibration by relaxing the
individual sub-cell pressures to equilibrium and (ii) to determine the single
updated value of the relaxing-toward-equilibrium pressure assigned to the
overall mixed cell. This approach couples the problem of assigning a single
mixed-cell pressure to the physics associated with the local dynamical evolu-
tion. We discuss several test problems, using either ideal-gas or stiffened-gas
equations of state, on which we exercise this method, providing complete
details of the setup for each problem together with quantitative results of
our approach on these problems.

This paper is structured as follows. Section 2 describes the basic 1-D
Lagrangian hydrodynamics equations and the predictor-corrector scheme we
employ to obtain solutions. We describe details of the two-material model,
based on the work of Lagoutière [15] and Després & Lagoutière [10], in §3.
Extensions of this model to account for relaxation through the dynamics of a
sub-cell Riemann problem are discussed in §4. A description of test problems
and results for this method is contained in §5. We summarize our findings
and conclude in §6.

2 One-dimensional Lagrangian hydrodynam-

ics

In this section, we describe the basic predictor-corrector algorithm that we
use to obtain numerical solutions to the governing equations discussed in the
previous section. We first restrict our attention to the single-material case,
then discuss where modifications for multi-material cells are required.

The partial differential equations governing the conservation of momen-
tum and internal energy, written in the Lagrangian frame of reference moving,
are (discussed, e.g., by Caramana et al. [7]):

ρ
du

dt
+∇P = 0 , (1)
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ρ
dε

dt
+ P ∇ · u = 0 . (2)

In these equations, u is the velocity and P = P (τ, ε) is the thermodynamic
pressure, where ε is the specific internal energy (SIE) and τ is the specific
volume, which given by the inverse of the mass density ρ of the fluid. The
numerical scheme we present consists of a staggered-mesh discretization for
the one-dimensional case of the above system, augmented by a trajectory
equation for the cell vertices; together, this set of equations implies mass
conservation. In the following, subscripts denote spatial position and super-
scripts associated with temporal indexing. Cell-centers (at index i+1/2) are
associated with cell masses Mi+1/2, cell volumes Vi+1/2, and thermodynamic
state variables of the cell, such as density ρi+1/2, specific volume τi+1/2, SIE
εi+1/2, pressure pi+1/2, and sound speed csi+1/2. The vertices of cell i are
associated with edge positions xi and xi+1, edge velocities ui and ui+1, and
node-centered control volume masses mi and mi+1.

We assume that we have all the necessary information to completely spec-
ify the values of all state variables at time tn and seek to update the solution
to time tn+1 ≡ tn + δt, where δt is the timestep chosen to satisfy neces-
sary stability requirements (e.g., the CFL condition). The following set of
coupled, implicit equations capture the dynamics of the one-dimensional con-
servation equations by linking the updated values of the flowfield with the
current state:

mi
un+1

i − un
i

δt
=−∆

(
pn

i + pn+1
i

2

)
, (3)

u
n+1/2
i =

1

2

(
un

i + un+1
i

)
, (4)

xn+1
i = xn

i + δt · un+1/2
i , (5)

V n+1
i+1/2 = xn+1

i+1 − xn+1
i , (6)

τn+1
i+1/2 = V n+1

i+1/2 / Mi+1/2 , (7)

Mi+1/2

εn+1
i+1/2 − εn

i+1/2

δt
=−

pn
i+1/2 + pn+1

i+1/2

2

 ∆∗u
n+1/2
i+1/2 , (8)

pn+1
i+1/2 =P(τn+1

i+1/2, ε
n+1
i+1/2) . (9)

Here, P is the mapping that gives the pressure as a function of the density and
SIE. Also, the operator ∆ and its adjoint ∆∗ are defined on the appropriate
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discrete function spaces as:

∆ξi≡ ξi+1/2 − ξi−1/2 , (10)

∆∗ηi+1/2≡ ηi+1 − ηi . (11)

We propose the following iterative scheme by which to obtain a solution
for the variables at tn+1 in Eqs. (3)–(9):

Set pn+1,0
i+1/2 := pn

i+1/2 and iterate for s = 1, . . . : (12)

mi
un+1,s

i − un
i

δt
= −∆

(
pn

i + pn+1,s−1
i

2

)
, (13)

u
n+1/2,s
i =

1

2

(
un

i + un+1,s
i

)
, (14)

xn+1,s
i = xn

i + δt · un+1/2,s
i , (15)

V n+1,s
i+1/2 = xn+1,s

i+1 − xn+1,s
i , (16)

τn+1,s
i+1/2 = V n+1,s

i+1/2 / Mi+1/2 , (17)

Mi+1/2

εn+1,s
i+1/2 − εn

i+1/2

δt
= −

pn
i+1/2 + pn+1,s−1

i+1/2

2

 ∆∗u
n+1/2,s
i+1/2 , (18)

pn+1,s
i+1/2 = P(τn+1,s

i+1/2 , εn+1,s
i+1/2) . (19)

As shown by Bauer et al. [5], this iteration is stable under the usual con-
straints, e.g., CFL number between zero and one. Moreover, this scheme
is nominally second order accurate in both space and time for sufficiently
smooth initial conditions and sufficiently short times; the method invariably
degenerates to first order as discontinuous flow features develop.

One can interpret the first two iterations of this algorithm as a predictor-
corrector method. We write this numerical scheme as follows:

Predictor

mi
un+1,?

i − un
i

δt
=−∆ (pn

i ) , (20)

⇒ un+1,?
i = un

i −
δt

mi

(
pn

i+1/2 − pn
i−1/2

)
, (21)

u
n+1/2,?
i =

1

2

(
un

i + un+1,?
i

)
, (22)
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xn+1,?
i = xn

i + δt · un+1/2,?
i , (23)

V n+1,?
i+1/2 = xn+1,?

i+1 − xn+1,?
i , (24)

τn+1,?
i+1/2 = V n+1,?

i+1/2 / Mi+1/2 , (25)

Mi+1/2

εn+1,?
i+1/2 − εn

i+1/2

δt
=−pn

i+1/2 ∆∗u
n+1/2,?
i+1/2 , (26)

⇒ εn+1,?
i+1/2 = εn

i+1/2 −
δt

Mi+1/2

pn
i+1/2

(
u

n+1/2,?
i+1 − u

n+1/2,?
i

)
, (27)

pn+1,?
i+1/2 =P(τn+1,?

i+1/2 , εn+1,?
i+1/2) . (28)

Corrector

mi
un+1

i − un
i

δt
=−∆

(
pn

i + pn+1,?
i

2

)
, (29)

⇒ un+1
i = un

i −
1

2

δt

mi

(
pn

i+1/2+ pn+1,?
i+1/2− pn

i−1/2− pn+1,?
i−1/2

)
, (30)

u
n+1/2
i =

1

2

(
un

i + un+1
i

)
, (31)

xn+1
i = xn

i + δt · un+1/2
i , (32)

V n+1
i+1/2 = xn+1

i+1 − xn+1
i , (33)

τn+1
i+1/2 = V n+1

i+1/2 / Mi+1/2 , (34)

Mi+1/2

εn+1
i+1/2 − εn

i+1/2

δt
=−

pn
i+1/2 + pn+1,?

i+1/2

2

 ∆∗u
n+1/2
i+1/2 , (35)

⇒ εn+1
i+1/2 = εn

i+1/2 −
1

2

δt

Mi+1/2

(
pn

i+1/2 + pn+1,?
i+1/2

)
×
(
u

n+1/2
i+1 − u

n+1/2
i

)
, (36)

pn+1
i+1/2 =P(τn+1

i+1/2, ε
n+1
i+1/2) . (37)

This two-step scheme can be made more efficient and equally as accurate
(at least formally) by replacing the EOS call in Eq. (28) with a predictor
pressure assignment based on an adiabatic relation among pressure, density,
and SIE. In this case, we replace Eq. (28) by:

pn+1,?
i+1/2 = pn

i+1/2 −
(csn

i+1/2)
2

τn
i+1/2

δV n+1,?
i+1/2

V n
i+1/2

, (38)
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where δV n+1,?
i+1/2 ≡ V n+1,?

i+1/2 − V n
i+1/2. One must, however, retain the full EOS

call in the corrector step of Eq. (37), to ensure thermodynamic consistency
and conservation at the updated time.

To decrease non-physical results for problems with nominally C0 solutions
(e.g., shockwaves), the pressure in these expressions must be augmented by
an artificial viscosity to provide additional numerical dissipation. In practice,
we modify each occurrence of the pressure p in the above approach by adding
an additional term q: notionally, pi+1/2 ← pi+1/2 + qi+1/2 in Eqs. (3), (8),
etc. For example, to calculate the artificial viscosity qn

i+1/2 at cell centers
at tn, used in Eqs. (21) and (27), the classical linear-plus-quadratic model
of von Neumann & Richtmyer [28] (see also Landshoff [16]), active only in
compression, is evaluated as:

qn
i+1/2 =

{
0 , if un

i+1 − un
i ≥ 0,

−ν1 ρn
i+1/2 csn

i+1/2 (un
i+1 − un

i ) + ν2 ρn
i+1/2 (un

i+1 − un
i )2 , otherwise,

(39)
where ν1 (numerically, nominally ∼ 1) and ν2 (∼ 0.1) are the coefficients of
the linear and quadratic contributions, respectively, and ρn

i+1/2 ≡ 1/τn
i+1/2 .

Similar expressions apply to predictor values of artificial viscosity, used, e.g.,
in Eqs. (30) and (36). While more sophisticated artificial viscosity models
are available (as described, e.g., by Campbell & Shashkov [6]), the simple
linear-plus-quadratic model is sufficient to demonstrate the efficacy of the
numerical methods for the 1-D gasdynamics problems discussed here.

3 Two-Material Instantaneous Equilibration

Model

We now examine a specific instantaneous pressure equilibrium model for a
two-material mixed cell. We make the fundamental assumption that the
fluids are not intermingled; that is, we assume that there is a scale on which
the two fluids are separated. We first review the model based on the work
of Lagoutière [15] and Després & Lagoutière [10] and discuss how to use this
model with the above algorithm.

A schematic of the mixed cell is shown in Fig. 1, which indicates mate-
rial 1 to the left of an idealized (massless) interface, which separates it from
material 2 to the right. In the following discussion, we largely suppress the
subscript index of the mixed cell, imix; instead, subscripts refer to the two
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materials in the multi-material cell. In keeping with the single-material al-
gorithm discussed in the previous section, assume that we have the following
quantities, consistently updated to time tn+1:

1. τn+1: the updated value of the overall specific volume of the mixed cell,
from Eqs. (25) and (34); and

2. εn+1: the updated value of the overall SIE of the mixed cell, from
Eqs. (27) and (36).

We also know a common pressure at the previous timestep, pn, for the mixed
cell; we discuss later how to update this common pressure from the con-
stituent materials’ updated pressures. In addition to those values, we know
the specific volume and SIE of the mixed cell’s constituent materials at the
previous timestep, i.e., τn

1 , τn
2 , εn

1 , εn
2 .

The quantities that we seek are the updated values of these properties,
viz.,

1. τn+1
1 , τn+1

2 : the updated specific volumes of materials 1 and 2, and

2. εn+1
1 , εn+1

2 : the updated SIEs of materials 1 and 2.

With these values, the individual materials’ EOSs define the associated ther-
modynamic variables. In the mixed cell, denote the mass fractions (“concen-
trations”) by c1 and c2 for materials 1 and 2, respectively:

c1 = m1/Mimix
and c2 = m2/Mimix

, (40)

where in the mixed cell

m1 = mass of material 1, m2 = mass of material 2 , (41)

Mimix
= total mass = m1 + m2 . (42)

Since the masses in the Lagrangian cells are fixed, the mass fractions c1 and
c2 do not vary with time.

The governing equations of the closure model discussed by Lagoutière [15]
and Després & Lagoutière [10] are the following.

• Conservation of mass (expressed with the specific volume):

c1τ
n+1
1 + c2τ

n+1
2 = τn+1 . (43)
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• Conservation of internal energy (expressed with the SIE):

c1ε
n+1
1 + c2ε

n+1
2 = εn+1 . (44)

• Equality of change in heat of the two materials: with dQk = dεk +
Pk dVk, this requirement implies:

εn+1
1 − εn

1 + P1(τ
n+1
1 − τn

1 ) = εn+1
2 − εn

2 + P2(τ
n+1
2 − τn

2 ) . (45)

• Equality of thermodynamic pressure Pk(τ, ε) of the two materials (k =
1,2):1

p = pn+1
1 = pn+1

2 ⇒ P1(τ
n+1
1 , εn+1

1 )− P2(τ
n+1
2 , εn+1

2 ) = 0 . (46)

The four relations (43), (44),2 (45), and (46) form a set of four nonlinear
equations in four unknowns: τn+1

1 , εn+1
1 , τn+1

2 , and εn+1
2 .

A choice must be made in how to model the pressure in Eq. (45). Among
the obvious options are the following (where k = 1,2 for the two materials):

• “Fully Implicit”: Pk = pn+1
k , the pressure at the updated time;

• “Fully Explicit”: Pk = pn
k , the pressure at the previous time; or

• “Thermodynamically Consistent”: Pk = 1
2

(
pn

k + pn+1
k

)
, the arithmetic

mean of the previous-time and updated-time pressures.

For a polytropic gas, closed-form solutions of this set of equations can be
obtained in each of these three cases. In Appendix A, we provide these
solutions to Eqs. (43)–(46) for polytropic gases. Many of these expressions
are algebraically very involved, but nevertheless comprise a useful result with
which one can verify the software implementation of the algorithm.

For general EOSs, Eqs. (43)–(46) do not admit a closed-form solution,
whether one considers the fully implicit, fully explicit, or thermodynami-
cally consistent closure models. We now describe an approach with which to
implement Newton’s method to obtain numerical solutions of these coupled
equations. First, rewrite these equations in the form

f(x) = 0 , (47)

1This relation explicitly specifies the common pressure of the mixed cell.
2As explained by Després & Lagoutière [10], Eqs. (43) and (44) are consistent with the

assumption that the fluids are separated at some scale.
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where

x ≡
[
τn+1
1 , εn+1

1 , τn+1
2 , εn+1

2

]T
, (48)

f ≡ [f1, f2, f3, f4]
T , (49)

with the components of f corresponding to the model equations:

f1 ≡ c1τ
n+1
1 + c2τ

n+1
2 − τn+1 , (50)

f2 ≡ c1ε
n+1
1 + c2ε

n+1
2 − εn+1 , (51)

f3 ≡ εn+1
1 − εn

1 + P1(τ
n+1
1 − τn

1 )

−
[
εn+1
2 − εn

2 + P2(τ
n+1
2 − τn

2 )
]

. (52)

f4 ≡ P1(τ
n+1
1 , εn+1

1 )− P2(τ
n+1
2 , εn+1

2 ) , (53)

A simple implementation of Newton’s method for the system in Eq. (47) can
be written as:

xν+1 = xν − β · δxν for ν = 0, . . . , where (54)

δxν =

(
∂f

∂x

)−1

xk

f(xk) , (55)

with β ∈ (0, 1] being a value that scales the magnitude of the Newton step.
The elements of the Jacobian matrix ∂f/∂x are given by(

∂f

∂x

)
ij

≡ ∂fi

∂xj

. (56)

The 4×4 matrix ∂f/∂x has several zero elements in the first two rows. The
modeling choice for the pressure term Pk in Eq. (52) affects the specific form
of the Jacobian elements:

• “Fully Implicit”: Pk = pn+1
k = Pk(τ

n+1
2 , εn+1

2 ), which depends on the
unknown vector x.

• “Fully Explicit”: Pk = pn
k , independent of the unknown vector x.

• “Thermodynamically Consistent”: this model uses the arithmetic mean
of the previous two models, Pk = 1

2

(
pn

k + pn+1
k

)
= 1

2

(
pn

k + Pk(τ
n+1
2 , εn+1

2 )
)
,

which also depends on the unknown vector x.
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Expressions for the elements of the Jacobian are given in Appendix B. These
expressions can be used in software implementations of the Newton’s method
iteration.3

To initialize the iteration in Eqs. (54) and (55), the initial values for the
unknowns are taken to be those at time tn:

x0 = [τn
1 , εn

1 , τn
2 , εn

2 ]T . (57)

This iteration was found to converge rapidly for the cases considered in §5.

4 Two-Material Riemann Problem/Pressure

Relaxation Model

The model of the previous section provides an approach in which the pres-
sures of the constituents of a two-material cell are equilibrated at the end of
each timestep. In this section, we describe a sub-cell dynamics model that
leads naturally to schemes by which to relax the constituent pressures to
equilibrium. That is, given an initial state with a discrepancy between the
pressures of material 1 and material 2, we seek a model with which to up-
date material pressures pn+1

1 and pn+1
2 such that the difference between these

values approaches zero as time increases.4 We do so with a purely dynamical
model that does not appeal to any explicit dissipation terms, per se.

To set the stage for this model, the relaxation operator R takes as input
the thermodynamic states of the constituent materials at time tn together
with values for the overall specific volume and SIE at time tn+1. On output,
the thermodynamic states of the individual materials are updated to time
tn+1 and some estimate of an updated common cell pressure is provided.
Schematically, we write this as:

R
(
τn
1 , εn

1 , τ
n
2 , εn

2 ; τn+1, εn+1
)

=
{
τn+1
1 , εn+1

1 , τn+1
2 , εn+1

2 ; pn+1
1 , pn+1

2 , pn+1
}

.

(58)
In this section we describe in detail the relaxation operator R.

3To accelerate this algorithm, one could perform a small number of iterations in the
Newton step, instead of converging the solution.

4This idealized picture is for the special case of stationary flow, i.e., in the absence of
external flow perturbations. More generally, there will be external flow effects and, so, one
should not expect pressure equilibration in a mixed cell to necessarily obtain.
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4.1 Two-Material Riemann-Problem/Relaxation Model:
Equations

The foundation of this approach is to consider the evolution of the multi-
material cell over one timestep to be related to a local Riemann problem.
This cell is identified by the index imix, with the states of the two materials
assumed to be available at time tn. The location of the interface between
the materials at this time determined by the local volume fraction of, say,
material 1, given by f1:

xn
intfc = xn

imix
+ f1(x

n
imix+1 − xn

imix
) ∈

[
xn

imix
, xn

imix+1

]
. (59)

Specifically, the two states in this cell at tn are given by:

(ρ, e, p, u) =


(
ρ1, e1, p1, uimix

)
, if xn

imix
< x < xn

intfc ,(
ρ2, e2, p2, uimix+1)

)
, if xn

intfc < x < xn
imix+1 .

(60)

The solution to this one-cell Riemann problem problem at time tn+1 can
be computed for polytropic gases according to the method of Gottlieb &
Groth [12], for stiffened gases following Plohr [21], and for more general
equations of state as described by Colella & Glaz [8] and Quartapelle et
al. [22].

A schematic of the initial conditions and idealized solution to this problem
is shown in Fig. 2, which depicts the pressure for the mixed cell at tn on
the bottom and at tn+1 on the top, in the particular case of a rarefaction-
contact-shock configuration. In this figure, the top (tn+1) diagram exhibits,
from left to right, the left tn state, the leading left-most Riemann wave
(WL), the contact discontinuity (W ∗), the leading right-most Riemann wave
(WR), and the right tn state. We emphasize that the states outside of the
leading waves are unchanged from their values at tn during the timestep
δt. If the left- or right-most wave is a shock, then the precise location of
this wave is unambiguous; if this wave is a rarefaction, however, then we do
not use the exact solution but instead choose either the head or tail of the
rarefaction as defining the location of this wave (as in Fig. 2). In the domains
delimited by these waves, i.e., between the left-most wave and the contact,
and between the contact and the right-most wave, we assume the Riemann-
problem pressure is constant in space at time tn+1; outside these waves, we
assume that the pressure retains its initial (i.e., at tn) values. Depending on
the initial conditions of the Riemann problem, these assumptions may not
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be strictly valid (e.g., when rarefactions are present); nonetheless, they can
be used in the optimization method that we describe below.5

Let the region to the left of the contact contain two sets Ω1 and Ω2,
defined as

Ω1 ≡
{
x : xn+1

imix
< x < xRP

left

}
and Ω2 ≡

{
x : xRP

left < x < xRP
cont

}
, (61)

where xRP
left is the position of the left-most wave and xRP

cont is the contact posi-
tion, both determined from the solution to the Riemann problem (identified
by the superscript “RP”). Denote similar subsets to the right of the contact
as Ω3 and Ω4:

Ω3 ≡
{
x : xRP

cont < x < xRP
right

}
and Ω4 ≡

{
x : xRP

right < x < xn+1
imix+1

}
, (62)

where xRP
right is the position of the right-most wave of the Riemann problem

solution.
The key assumption of our approach is the following: we seek a single

updated pressure values for each material (i.e., on each side of the contact)
that minimizes the discrepancy between those values and the pressure given
by the Riemann problem solution in that domain. A mathematical expression
of this statement replaces the instantaneous pressure equilibration equation
(Eq. (53) in §3) while the other constraints of the model (Eqs. (50)–(52))
still apply.

We express this relation mathematically as the following optimization
problem:

min{
τn+1
1 , εn+1

1 , τn+1
2 , εn+1

2

} (
||pn+1

1 − pRP
1 ||+ ||pn+1

2 − pRP
2 ||

)
(63)

subject to the constraints given by Eqs. (50)–(52):

f1 ≡ c1τ
n+1
1 + c2τ

n+1
2 − τn+1 = 0 , (64)

f2 ≡ c1ε
n+1
1 + c2ε

n+1
2 − εn+1 = 0 , (65)

f3 ≡ εn+1
1 − εn

1 + P1(τ
n+1
1 − τn

1 )

−
[
εn+1
2 − εn

2 + P2(τ
n+1
2 − τn

2 )
]

= 0 . (66)

5One could utilize the entire non-piecewise-constant solution pressure when a rarefac-
tion fan is present. Such a model introduces additional complexity to the relaxation model
presented below.
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In Eq. (63), pRP
1 and pRP

2 are the solutions of the Riemann problem for the
pressure in materials 1 and 2, respectively. These quantities may vary as a
function of position in each of the these materials.

Using the L2 norm, the terms in Eq. (63) can be written in terms of the
locally constant pressure values in each domain:

||pn+1
1 − pRP

1 ||= Ω̃1

(
pn+1

1 − pRP
1

)2
+ Ω̃2

(
pn+1

1 − pRP
1

)2
and (67)

||pn+1
2 − pRP

2 ||= Ω̃3

(
pn+1

2 − pRP
2

)2
+ Ω̃4

(
pn+1

2 − pRP
2

)2
. (68)

Here, the nondimensional quantity Ω̃j equals the measure of the set Ωj di-
vided by the entire cell length, δxn+1:

Ω̃j =

(
max
x∈Ωj

x − min
x∈Ωj

x

)/(
xn+1

imix+1 − xn+1
imix

)
; (69)

with this definition,

Ω̃j ≥ 0 , ∀j , and
4∑

j=1

Ω̃j = 1 . (70)

Outside of the leading waves, i.e., on sets Ω1 and Ω4, the Riemann problem
pressure equals the initial pressure:

pRP
1 = pn

1 for x ∈ Ω1 and pRP
2 = pn

2 for x ∈ Ω4 . (71)

Between the contact and these waves, we assign the pressure to be the so-
called “star-state” pressure of the Riemann problem solution, described, e.g.,
by Toro [27] and LeVeque [17]:

pRP
1 = p∗ for x ∈ Ω2 and pRP

2 = p∗ for x ∈ Ω3 . (72)

Therefore, Eqs. (67) and (68) imply the following relations:

||pn+1
1 − pRP

1 ||= Ω̃1

(
pn+1

1 − pn
1

)2
+ Ω̃2

(
pn+1

1 − p∗
)2

and (73)

||pn+1
2 − pRP

2 ||= Ω̃3

(
pn+1

2 − p∗
)2

+ Ω̃4

(
pn+1

2 − pn
2

)2
. (74)

We recast this constrained minimization problem as simple minimization
through the use of Lagrange multipliers. Specifically, to the expression to be
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minimized we add each of the constraint terms multiplied by an unknown pa-
rameter (the Lagrange multiplier) and then seek to minimize that composite
function. The overall minimization statement then becomes the following:

min{
τn+1
1 , εn+1

1 , τn+1
2 , εn+1

2 , λ1, λ2, λ3

} G(τn+1
1 , εn+1

1 , τn+1
2 , εn+1

2 , λ1, λ2, λ3) (75)

where G ≡ ||pn+1
1 − pRP

1 ||+ ||pn+1
2 − pRP

2 ||+ λ1f1 + λ2f2 + λ3f3 . (76)

A possible extremum of the function G is obtained by finding a solution that
corresponds to a zero of the coupled set of nonlinear equations given by:

∂G/∂Xi = 0 , i = 1, . . . , 7, where X ≡
[
τn+1
1 , εn+1

1 , τn+1
2 , εn+1

2 , λ1, λ2, λ3

]T
.

(77)
Since the derivative of G with respect to a Lagrange multipliers is just the
corresponding constraint equation, parameter values that satisfy ∂G/∂Xi =
0 perforce obey the constraint equations. Numerical solutions to this prob-
lem can be sought with Newton’s method for the system of equations given
in Eq. (77). In this case, the elements of the function f in the Newton’s
method described in Eqs. (54) and (55) are comprised of the partial deriva-
tives ∂G/∂Xi.

In practice, the terms in the objective function G are nondimensionalized
by local characteristic values, so that the contributions to G are comparable.
One such nondimensionalization is:

G ≡ Ω̃1

(
pn+1

1 − pn
1

)2
/p̄2 + Ω̃2

(
pn+1

1 − p∗
)2

/p̄2

+ Ω̃3

(
pn+1

2 − p∗
)2

/p̄2 + Ω̃4

(
pn+1

2 − pn
2

)2
/p̄2

+ λ1

[
(c1τ

n+1
1 + c2τ

n+1
2 )/τn+1 − 1

]
+ λ2

[
(c1ε

n+1
1 + c2ε

n+1
2 )/εn+1 − 1

]
+ λ3

{[
εn+1
1 − εn

1 + P1(τ
n+1
1 − τn

1 )
]
/εn+1

−
[
εn+1
2 − εn

2 + P2(τ
n+1
2 − τn

2 )
]
/εn+1

}
, (78)

where p̄ is a characteristic pressure of the entire zone at tn (e.g., pn
imix

).

4.2 Relaxation to a single pressure

Unlike the instantaneous pressure equilibration model, this approach does not
imply an unambiguous value for the pressure of the mixed cell. Consistent
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with the solution of the set of coupled model equations, one could assign
the overall mixed-cell pressure value as a spatial average of the two updated
pressures:

pn+1
imix

= p = (Ω̃1 + Ω̃2) pn+1
1 + (Ω̃3 + Ω̃4) pn+1

2 . (79)

Alternatively, one could use the information from the sub-cell dynamical
evolution model to assign a single pressure to the mixed cell pressure based
on the extent of the wave propagation in the Riemann problem model:

pn+1
imix

= p̃ = Ω̃1 pn
1 + (Ω̃2 + Ω̃3) p∗ + Ω̃4 pn

2 . (80)

These values enter into the overall algorithm in Eqs. (21), (27), (30), and
(36). In the results of §5, the common pressure given in Eq. (79) is used.

To motivate heuristically why this approach leads to pressure equilibra-
tion with increasing time, we consider the structure of the Riemann problem
solutions. For polytropic gases, the four non-degenerate Riemann problem
solution configurations can be denoted, following Gottlieb & Groth [12], as:
RCS, RCR, SCR, and SCS, where the order corresponds to the wave family
from left to right, and the letter identifies the particular wave: “R” means
a rarefaction fan, “C” denotes a contact (across which the pressure equals
the star-state value and is continuous), and “S” indicates a shock.6 There
are two cases: (1) the star-state pressure, p∗, is bounded by the pressures on
the left and right (e.g, in the case of equal polytropic indices for the RCS
and SCR solutions with no initial velocity) and (2) p∗ exceeds the extremal
left and right pressures (i.e., p∗ is either less than the minimum pressure
or greater than the maximum pressure, e.g., in the case of equal polytropic
indices for the RCR and SCS solutions with no initial velocity).

Consider the first case and assume that pn
1 < p∗ < pn

2 (the case with pn
1 >

p∗ > pn
2 is similar). For material 1, the result of the minimization process,

pn+1
1 , must be bounded by pn

1 and p∗: if it were not, then one could always
find a value p̃n+1

1 that would give a smaller value of the convex combination
in Eq. (73). An analogous argument holds for material 2. Thus, at the end of
the timestep we have the ordering, pn

1 < pn+1
1 < p∗ < pn+1

2 < pn
2 . Therefore,

the pressure difference at the end of the timestep, |pn+1
1 − pn+1

2 |, is less than

6We ignore the vacuum boundary case. Additionally, the fifth case of the polytropic gas
Riemann solutions is the degenerate situation in which a vacuum region develops between
the opposing rarefaction waves, i.e., RCVCR, in the above notation. The consequences of
this situation with respect to pressure equilibration are comparable to those of the RCR
case.
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the pressure difference at the start of the timestep, |pn
1−pn

2 |, i.e., the pressures
are relaxing toward equilibrium.

Consider now the second case and assume, without loss of generality,
that p∗ < pn

1 , pn
2 ; for the sake of argument, further assume that pn

1 < pn
2 .

In material 1, the result of the minimization process, pn+1
1 , must again be

bounded by pn
1 and p∗, and similarly for material 2: p∗ < pn+1

1 < pn
1 and

p∗ < pn+1
2 < pn

2 . Considering possible values of the positive numbers Ω̃j in
Eqs. (73) and (74), it is conceivable that the pressure difference could increase
during the timestep (not accounting for the effect of the other constraints).
Stated another way, these inequalities alone are insufficient to ensure that
the pressures tend toward equlibrium, i.e., one cannot immediately infer that
|pn+1

1 − pn+1
2 | < |pn

1 − pn
2 |. Additional special cases are those of a uniformly

translating contact and a uniformly propagating shock. The former perforce
obeys pressure equilibrium from tn to tn+1, while the latter necessarily main-
tains pressure non-equlibrium through the timestep.

Therefore, while it is plausible that some initial (i.e., tn) mixed-cell con-
ditions lead to a decrease in pressure difference over the course of a timestep
with our model (i.e., relax toward pressure equlibrium), other initial condi-
tions in the mixed-cell lead to the pressure difference between materials 1 and
2 increasing, at least temporarily. This (local) increase in the pressure differ-
ence between materials 1 and 2 is evident in some of the mixed-cell pressure
time history results of §5; see, e.g., Fig. 11. All of the problems we consider
in §5, however, lead to pressure equilibrium at late times. We speculate that
the constituent pressures are driven, at late time, to the star-state pressure
of a Riemann problem toward which the mixed cell evolves over many cycles.
This speculation assumes that there are not other perturbations that enter
the cell and drive it from equilibrium (such as occurs, e.g., in the problem of
§5.4 and evident in Fig. 14).

4.3 2-Material Riemann-Problem/Relaxation Model:
Numerical Implementation

The (single) pressure of a (two-material) mixed cell, pn
imix

, where imix is the
index of the mixed cell, enters into the overall algorithm, influencing the
updated velocities at the edges of the mixed cell. Therefore, the manner in
which an overall pressure for the multi-material mixed cell is assigned will
have a direct impact on the overall results. In the predictor phase, this value
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enters in the evaluation of the predictor velocity un+1,?
i in Eq. (21), which

influences the cell edges positions in Eq. (23), cell volumes in Eq. (24), etc., as
well as in the predictor SIE in Eq. (27). Similarly, in the corrector phase, the
cell velocities, edges, volumes, etc., are affected by the predictor value of the
sole mixed-cell pressure in Eqs. (30)–(36). The pressures of the individual
constituents in a multi-material cell are used to generate a single, overall
pressure for the entire cell. In addition to this value, the updated values of
the state of the two materials (viz., the specific volumes and SIEs) must be
carried along into the next computational cycle.

We now describe an algorithmic implementation of the mixed cell model.
As mentioned earlier, assume that we have, at time tn, a common pressure
value, pn

imix
, for the mixed cell as well as the thermodynamic variables for

the individual constituents, τn
1 , εn

1 , τn
2 , εn

2 . In the predictor phase, the steps
listed in Eqs. (20)–(27) are followed exactly, where the common pressure
value from the previous timestep, pn

imix
, is used for the mixed cell. After the

step in Eq. (27), predictor values for the overall mixed cell specific volume
and SIE are generated. Instead of the single-material pressure evaluation
given in Eq. (28), one invokes the mixed-cell model.

The full evaluation of the predictor values for the mixed cell is as follows.

1. Starting with the initial conditions specified by the mixed-cell state at
tn, solve the mixed-cell predictor Riemann problem over the timestep
δt, which we represent notionally as <(τn

1 , εn
1 , τ

n
2 , εn

2 ; δt).

2. Use those results to determine the the star-state pressure and the
extent of wave propagation: <(τn

1 , εn
1 , τ

n
2 , εn

2 ; δt) ⇒ p∗ and Ω̃j, j =
1, . . . , 4 (see Eq. (69)); these quantities are used in the evaluation of
the pressure-difference expressions in Eqs. (73) and (74).

3. Obtain a solution of the associated minimization problem, given in
Eqs. (75) and (76), for predictor values of the thermodynamic state
of the individual constituents, τn+1,?

1 , εn+1,?
1 , τn+1,?

2 , εn+1,?
2 , using the

values at tn as an initial guess.

4. Evaluate the predictor component pressures with EOS calls: pn+1,?
k =

P(τn+1,?
k , εn+1,?

k ), k = 1, 2.

5. Evaluate the predictor common pressure, pn+1,?, according to either
Eq. (79) or Eq. (80).
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For the corrector phase, the steps listed in Eqs. (29)–(36) are followed,
where the predictor common pressure value, pn+1,?, is now used for the mixed
cell. Instead of the single-material pressure evaluation given in Eq. (37), the
corrector phase of the mixed-cell model is evaluated.

1. Starting with the initial conditions specified by the mixed-cell state
at tn, solve the mixed-cell Riemann problem over the timestep δt:
<(τn

1 , εn
1 , τ

n
2 , εn

2 ; δt).

2. Use the results of this problem to determine the star-state pressure
and the extent of wave propagation: <(τn

1 , εn
1 , τ

n
2 , εn

2 ; δt) ⇒ p∗ and Ω̃j,
j = 1, . . . , 4 (see Eq. (69)), with which one can evaluate terms of the
pressure-difference expressions in Eqs. (73) and (74).

3. Solve the associated minimization problem, given in Eqs. (75) and (76),
for updated values of the thermodynamic state of the individual con-
stituents, τn+1

1 , εn+1
1 , τn+1

2 , εn+1
2 ; here, the predictor values of these

quantities can be used as an initial guess.

4. Evaluate the corrector component pressures with EOS calls: pn+1
k =

P(τn+1
k , εn+1

k ), k = 1, 2.

5. Model the final common pressure, pn+1, according to either Eq. (79) or
Eq. (80).

5 Test Problems and Results

We now turn to several different test problems found in the compressible
flow literature to evaluate the methods described above. We focus on prob-
lems with exact solutions, so that we can rigorously evaluate and compare
the quantitative errors associated with different methods. While several
test problems exist and are used by the single-material compressible flow
algorithm development community (see, e.g., the overview by Liska & Wen-
droff [18]), fewer problems are available for code verification of multifluid
compressible flow.

In all of the problems we consider, the mesh initially consists of Nx zones,
each of identical dimension 1/(Nx + 1), with the exception of the central
zone, which is of width 2/(Nx + 1). In that central zone, the mass and
volume fractions are assigned to be consistent with the initial conditions,
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and the initial interface between materials 1 and 2 is located in the geometric
center of that cell. When Newton’s method is used, we imposed an absolute
L1 convergence tolerance of at least 10−10 in the nondimensional test cases
and 10−7 in the dimensional water-air shock tube problem of §5.5. For the
results presented here, we assign the single mixed-cell pressure as the spatially
averaged value of the two sub-cell pressures of the constituent materials,
i.e., as that given in Eq. (79). We present graphical results consisting of
snapshots of the computed and exact flowfields at the final time along with
time-histories of the material state properties of the two materials in the
multimaterial cell. Additionally, we quantify the error between the computed
results and the exact solution.

5.1 The Sod Shock Tube

The Sod shock tube problem [25] is defined as the behavior of a polytropic
gas with the following non-dimensional initial conditions:

(γ, ρ, e, p, u) =
{

(1.4, 1, 2.5, 1, 0) , if 0 < x < 0.5 ,
(1.4, 0.125, 2, 0.1, 0) , if 0.5 < x < 1 ,

(81)

with a final time of tfinal = 0.2. We refer to the material to the left of
x = 0.5 (“the interface”) as “material 1” and the material to the right as
“material 2.” The initial condition of the mixed cell, centered at x = 0.5,
consists of these two disparate states. The developing structure consists of
a rarefaction wave moving to the left, a contact discontinuity (tracking the
initial discontinuity between the two states) moving right, and a shockwave
moving right (faster than the contact). The exact solution to this problem
is evaluated and used to quantify the error in the computed solution.

Results of our method on this problem are shown in Figs. 3–5. Shown in
Fig. 3 are, clockwise from the upper left, plots of the mass density, pressure,
velocity, and SIE at the final time. These plots contain the computed values
(solid line) and exact solution (dashed line) plotted against the left ordinate
and the signed difference between the exact and computed results (dotted
line) plotted against the right ordinate. The values corresponding to the
individual material in the mixed cell are indicated with the symbol •. Errors
are present at the usual locations, e.g., at the head and tail of the rarefaction
and at the shock, with slight overshoots and undershoots at the contact. The
SIE in Fig. 3(a) exhibits obvious overshoot on the shock-side of the contact.
Table 1 catalogues the L1 norm of the error between the computed results
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and the exact solution for the same flow variables, evaluated pointwise on
the computational domain for 100, 200, 400, and 800 zones. Also included
in that table is the outcome of fitting these results to the error ansatz,

||ycomputed − yexact||1 = A∆xσ , (82)

where ∆x is the initial, uniform mesh spacing of the problem (in all but the
mixed cell). These values are depicted graphically in Fig. 4. These results
suggest overall first-order convergence of the method.

Figure 5 contains time-history plots of the (from left to right) pressure, the
mass density, and SIE of the two materials in the mixed cell, for the (from top
to bottom) 100-, 200-, 400-, and 800-cell results. In these figures, the solid line
indicates the left material (material 1) and a dotted line represents the right
material (material 2). It is clear from these results that pressure equilibrium
obtains for this problem by this method. Note that relaxation to equilibrium
is not monotonic in the pressure difference as time progresses. Moreover, the
zoning study shows that the effective relaxation effect is proportional to the
mesh spacing, i.e., the time step.

5.2 The Modified Sod Shock Tube

Various authors have proposed modifications to the standard Sod shock tube
problem discussed in the previous section. We consider the variant used by
Shashkov [24], with the following non-dimensional initial conditions:

(γ, ρ, e, p, u) =
{

(2 , 1, 2, 2, 0) , if 0 < x < 0.5 ,
(1.4, 0.125, 2, 0.1, 0) , if 0.5 < x < 1 ,

(83)

with a final time of tfinal = 0.2. As in the standard Sod case, the initial con-
dition of the mixed cell, again centered at x = 0.5, contains both of these two
distinct states. The solution structure is the same as the standard Sod case;
however, this modified problem allows one to test the truly multimaterial
aspects of our algorithm.

Results of our method on this problem are shown in Figs. 6–8. Shown in
Fig. 6 are, clockwise from the upper left, plots of the mass density, pressure,
velocity, and SIE at the final time. These plots contain the computed values
(solid line) and exact solution (dashed line) plotted against the left ordinate
and the signed difference between the exact and computed results (dotted
line) plotted against the right ordinate. The values corresponding to the
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individual material in the mixed cell are indicated with the symbol •. The
stronger initial pressure difference of this problem leads to greater over- and
undershoot at the shock than the standard Sod problem; as in the standard
Sod results, overshoot in the shock-side SIE is seen.

Table 2 shows the L1 norm of the error between the computed results
and the exact solution for these flow variables, computed pointwise on the
computational domain for 100, 200, 400, and 800 zones, together with the
fit of those results to the ansatz in Eq. (82). The convergence results are
slightly more uniform for this problem than for the standard Sod problem.
These values are plotted in Fig. 7.

Figure 8 contains time-history plots of the (from left to right) pressure,
the mass density, and SIE of the two materials in the mixed cell, for the (from
top to bottom) 100-, 200-, 400-, and 800-cell results. In these figures, the
solid line indicates the left material (material 1) and a dotted line represents
the right material (material 2). These results are qualitatively very similar
to those of the standard Sod problem, with slight non-monotonic behavior
in the pressure difference, which ultimately goes to zero.

5.3 Moving Shock Problem

This problem tests the steady propagation of a shock wave in a uniform
material and is used to assesses the impact of the multimaterial algorithm
on the otherwise uniform flow. The non-dimensional initial conditions are:

(γ, ρ, e, p, u) =
{

(5/3, 4, 0.5, 4/3, 1) , if −1 < x < 0 ,
(5/3, 1, 10−4, 2/3×10−4, 0) , if 0 < x < 1 ,

(84)

with a final time of tfinal = 0.5. These initial conditions approximate an
infinitely strong shock wave moving into quiescent gas at speed us = 4/3.
The default mesh for this problem contains 256 cells on −1 ≤ x ≤ 1. The
mixed cell is initially centered at x = 0.0 and contains the two states indicated
above.

Results of our method on this problem are shown in Figs. 9–11. Shown in
Figure 9 are, clockwise from the upper left, plots of the mass density, pressure,
velocity, and SIE at the final time; again, the computed values (solid line)
and exact solution (dashed line) are plotted against the left ordinate and
the signed differences between these values (dotted line) are plotted against
the right ordinate, with the mixed-cell values indicated by the symbol •.
The perturbation in the results to the right of the origin in these plots is a
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residual of the start-up error associated with the initial shock location at the
origin.7 The additional discrepancies in the solutions are associated with the
contact (at x = 0.5) and the shock (at x = 2/3), where, again, over- and
under-shoots occur, with the SIE overshoot being most pronounced.

Table 3 shows the L1 norm of the error between the computed results
and the exact solution for these flow variables, computed pointwise on the
computational domain for 256, 512, and 1024 zones, together with the fit of
those results to the ansatz in Eq. (82). These values are depicted graphically
in Fig. 10. These results again suggest overall first-order convergence of the
method.

Figure 11 contains time-history plots of the (from left to right) pressure,
the mass density, and SIE of the two materials in the mixed cell, for the (from
top to bottom) 256-, 512-, and 1024-cell results. In these figures, the solid line
indicates the left material (material 1) and a dotted line represents the right
material (material 2). These results present clear examples of the pressure
difference converging at early time, diverging at intermediate time, and then
relaxing to zero at late times. The pressure histories for this problem support
the contention posited in §4.2, that the pressures computed with this model
do relax to equillibrium, but in a possibly non-monotonic manner.

5.4 Shock-Contact Problem

This problem tests the transmission and reflection of a Mach 2 shock through
an initially stationary contact discontinuity between two materials with dis-
parate adiabatic indices. This problem was used by Banks et al. [3] to evalu-
ate high-resolution Godunov algorithms for multimaterial, compressible flow
in the Eulerian frame. To three significant figures, the non-dimensional initial
conditions are given by:

(γ, ρ, e, p, u) =


(1.35, 2.76, 4.60, 4.45, 1.48) , if 0 < x < 0.1 ,
(1.35, 1.0, 2.86, 1.0, 0.0) , if 0.1 < x < 0.5 ,
(5.0, 1.9, 0.132, 1.0, 0.0) , if 0.5 < x < 1 ,

(85)

with a final time of tfinal = 0.25. The default mesh for this problem has
274 cells on the initial domain −0.37 ≤ x ≤ 1. In the calculations we
use high-precision initial conditions corresponding to a Mach number of two

7Evocative of this phenomenon are post-shock oscillations, as discussed by Arora &
Roe [2] and LeVeque [17] for Eulerian shock capturing schemes.
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corresponding to a shock speed of us = 2.32, as given in Table 4. The mixed
cell is initially centered at x = 0.5 and contains the quiescent states of the
materials with differing adiabatic indices. The shock meets this material
interface at t = 0.172. The numerical solution for the flow state at any
time can be obtained using standard shock relations (see, e.g., the report by
Hurricane & Miller [13]); high-precision results for the final time are given in
Table 5.

Results of our method on this problem are shown in Figs. 12–14. Shown
in Fig. 12 are, clockwise from the upper left, plots of the computed (solid
line) and exact (dashed line) mass density, pressure, velocity, and SIE at the
final time, together with the signed difference between these values (dashed
lines), as well as the mixed-cell values (•). The residual of the start-up error
is evident near the origin. The reflected shock is somewhat noisier in both
density and SIE than the transmitted shock, while the contact exhibits a
notable undershoot in the constituent density. Table 6 catalogues the L1

norm of the error between the computed results and the exact solution for
these same flow variables, computed pointwise on the computational domain
for 274, 549, 1099, and 2199 zones, together with the fit of those results to
the ansatz in Eq. 82. These values are plotted in Fig. 13. These results again
suggest overall first-order convergence for this problem.

Figure 14 contains time-history plots of the (from left to right) pressure,
the mass density, and SIE of the two materials in the mixed cell, for the (from
top to bottom) 274-, 549-, 1099-, and 2199-cell results for the initial domain
−0.37 ≤ x ≤ 1. In these figures, the solid line indicates the left material
(material 1) and a dotted line represents the right material (material 2).
The mixed cell is initially in pressure equilibrium, which is disturbed by the
passing shock, which leads to slight pressure non-equlibrium, which rapidly
diminishes.

5.5 Water-Air Shock Tube

The water-air shock tube has become a standard test problem in the mul-
timaterial compressible flow community, as it tests inherently compressible
flow features, uses a slightly more complicated and stiffer EOS than the stan-
dared polytropic gas, and possesses a directly computable solution. Varia-
tions of this problem have been evaluated by several researchers, including,
e.g., Andrianov [1], Johnson & Colonius [14], Luo et al. [20], and Saurel &
Abgrall [23].
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The thermodynamic properties of water in this problem are given by the
stiffened-gas EOS:

p = (γ − 1) ρ e− γ p∞ , (86)

for which the square of the sound speed is given by

cs2 = γ (γ − 1)

(
e− p∞

ρ

)
= γ (p + p∞) /ρ . (87)

The initial conditions for this problem, in mks units, are:

(γ, p∞, ρ, e, p, u) =

{
(4.4, 6×108, 103, 1.07×106, 109, 0) , if 0 < x < 0.7,
(1.4, 0, 50, 5×104, 106, 0) , if 0.7 < x < 1,

(88)
with a final time of tfinal = 2.2 ×10−4 s. The multi-material cell is initially
centered at x = 0.7 and contains the two materials specified above. The
exact solution we use here is based on the solver described by Plohr [21].

Results of our method on this problem are shown in Figs. 15–17. Shown
in Fig. 15 are, clockwise from the upper left, plots of the computed (solid line)
and exact (dashed line) mass density, pressure, velocity, and SIE at the final
time, together with the signed difference between these values (dashed lines),
as well as the mixed-cell values (•). Due to the wide dynamic range, the
pressure results are depicted on a semi-log plot. Notable are the undershoot
in density and overshoot in SIE at the contact; the strong rarefaction is
reasonably well captured. Table 7 gives the L1 norm of the error between the
computed results and the exact solution for these flow variables, computed
pointwise on the computational domain for 100, 200, 400, and 800 zones,
together with the fit of those results to the ansatz in Eq. (82). These values
are depicted graphically in Fig. 16. The density error on the coarsest mesh
appear uncharacteristically small. Overall, these results imply first-order
convergence of the method for this problem.

Figure 17 contains time-history plots of the (from left to right) pressure,
the mass density, and SIE of the two materials in the mixed cell, for the (from
top to bottom) 100-, 200-, 400-, and 800-cell results. In these figures, the solid
line indicates the left material (material 1) and a dotted line represents the
right material (material 2). The pressure difference monotonically relaxes to
zero for this problem, although the pressure of material 1 is non-monotonic.
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6 Summary and Conclusions

We have considered the problem of closing the system of equations for a
two-material cell under the single velocity, single pressure assumption in one
dimensional Lagrangian hydrodynamics. We treat the constituents in these
multi-material cells as distinct, which presents the problem of how to assign
the thermodynamic states of the individual material components together
with the nodal forces that such a zone generates, despite a lack of detailed
information within such cells. Our approach is motivated by the work of
Lagoutière [15] and Després & Lagoutière [10], in which the change in heat
in the constituent materials in the mixed cell is assumed to be equal. This
mixed-cell model can be cast as a set of four nonlinear equations in four
unknowns consisting of the updated values of the specific internal energy
and the specific volume for each of the two materials in the mixed cell. A
solution to this set of nonlinear equations comprises one part of an overall
predictor-corrector scheme for solving the governing conservation laws.

We break the assumption of instantaneous pressure equilibration among
the mixed-cell constituents in the work of Lagoutière [15] and Després &
Lagoutière [10] by imposing a sub-cell dynamics model that uses a minimiza-
tion problem based on a local Riemann problem. The unique contribution of
our work is the use of this physics-inspired, geometry-based approach both (i)
to break instantaneous pressure equilibration by relaxing the individual sub-
cell pressures to equilibrium and (ii) to determine the single updated value of
the relaxing-toward-equilibrium pressure assigned to the overall mixed cell.
We have provided the full equations for our method as well as a description
of their algorithmic implementation.

We present results of our method for several test problems, each having
a directly computable solution with either ideal-gas or stiffened-gas equa-
tions of state, together complete details of the initial conditions for each
problem. Quantitative evaluation of the difference between our computed
results and the exact solutions demonstrates very nearly first-order conver-
gence on each of these five problems. The mixed cell pressures in all problems
evolve smoothly—but not necessarily monotonically—toward equilibrium on
a timescale that decreases approximately linearly with δt. The mixed-cell so-
lutions exhibit slight over- or undershoots in density (most noticeable in the
shock-contact and water-air shocktube problems) and SIE overshoot (seen in
the Sod, modified Sod, moving shock, and water-air shock tube problems).
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Appendix A: Exact Solutions for Instantaneous

Equilibration of Polytropic Gases

In this appendix we provide explicit formulae for the updated (tn+1) thermo-
dynamic state of the two materials in the mixed cell assuming instantaneous
pressure equilibration. These results are solutions of Eqs. (43)–(46). We pro-
vide closed-form solutions for four approaches: (1) the closed-form solution
of Loubère et al. [19] (which we refer to as the LSDL model), (2) the “fully
implicit” model, (3) the “fully explicit” model, and (4) the “thermodynami-
cally consistent” model. These expressions can be used in both the predictor
and corrector phases of the algorithm presented above.

A.1 The LSDL Model

The LSDL model [19] assumes both materials are described by a polytropic
EOS, with possibly different adiabatic indices. The assumption here is equiv-
alent to the “fully implicit” model. In [19], Loubère et al. present a compact
form of the exact solution. For this result, define the parameters:

D = c1 γ1 + c2 γ2 , a = εn
1 − εn

2 , b = τn
1 − τn

2 , (A1)

α1 = (γ2 εn+1 + c2 a)/D , α2 = (γ1 εn+1 − c1 a)/D , (A2)

β1 = c2 b/D , β2 = −c1 b/D . (A3)

Loubère et al. show that the closed-form expression for the overall mixed cell
pressure is given by

pn+1 = [c1 (γ1 − 1) α1 + c2 (γ2 − 1) α2] /[
τn+1 − c1 (γ1 − 1) β1 − c2 (γ2 − 1) β2

]
. (A4)

From this quantity, the mixed cell constituent specific volume and SIE are
given as:

τn+1
1 = (γ1 − 1)

[
(α1/p

n+1) + β1

]
, (A5)

τn+1
2 = (γ2 − 1)

[
(α2/p

n+1) + β2

]
, (A6)

εn+1
1 = α1 + β1 pn+1 , (A7)

εn+1
2 = α2 + β2 pn+1 . (A8)

With these values, the associated properties of the constituents of the mixed
cell can be evaluated.
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A.2 The Fully Implicit Model

In the “Fully Implicit” approach, the pressures in Eq. (46) are given by P1 =
pn+1

1 and P2 = pn+1
2 . This is equivalent to the assumptions of the LDSL [19]

model of the previous section. As an alternative to those results, symbolic
manipulation software was used to obtain closed-form expressions for the
solution in this case. One must distinguish between the case of identical
gases (i.e., γ1 = γ2 ≡ γ) and that of non-identical gases (i.e., γ1 6= γ2).

A.2.1 Fully implicit, identical gases

When γ1 = γ2 ≡ γ, the solution is given as:

p = (γ − 1) εn+1/τn+1 , (A9)

εn+1
1 =

γ εn+1τn+1 + c2 [(γ − 1) (τn
1 − τn

2 ) εn+1 + (εn
1 − εn

2 ) τn+1]

γ (c1 + c2) τn+1
, (A10)

εn+1
2 =

γ εn+1τn+1 − c1 [(γ − 1) (τn
1 − τn

2 ) εn+1 + (εn
1 − εn

2 ) τn+1]

γ (c1 + c2) τn+1
, (A11)

τn+1
1 =

γ εn+1τn+1 + c2 [(γ − 1) (τn
1 − τn

2 ) εn+1 + (εn
1 − εn

2 ) τn+1]

γ (c1 + c2) εn+1
, (A12)

τn+1
2 =

γεn+1τn+1 − c1 [(γ − 1) (τn
1 − τn

2 ) εn+1 + (εn
1 − εn

2 ) τn+1]

γ (c1 + c2) εn+1
. (A13)

A.2.2 Fully implicit, non-identical identical gases

When γ1 6= γ2, the solution is given as:

p =
c1c2 (γ1 − γ2) (εn

1 − εn
2 ) + [c1γ2 (γ1 − 1) + c2γ1 (γ2 − 1)] εn+1

(c2γ1 + c1γ2) τn+1 − c1c2 (γ1 − γ2) (τn
1 − τn

2 )
,(A14)

εn+1
1 =

γ2ε
n+1τn+1 + c2 [(γ2 − 1) (τn

1 − τn
2 ) εn+1 + (εn

1 − εn
2 ) τn+1]

(c2γ1 + c1γ2) τn+1 − c1c2 (γ1 − γ2) (τn
1 − τn

2 )
, (A15)

εn+1
2 =

γ1ε
n+1τn+1 − c1 [(γ1 − 1) (τn

1 − τn
2 ) εn+1 + (εn

1 − εn
2 ) τn+1]

(c2γ1 + c1γ2) τn+1 − c1c2 (γ1 − γ2) (τn
1 − τn

2 )
, (A16)

τn+1
1 = (γ1 − 1) {γ2 εn+1τn+1

+ c2

[
(γ2 − 1) (τn

1 − τn
2 ) εn+1 + (εn

1 − εn
2 ) τn+1

]
}

×{[c2γ1 (γ2 − 1) + c1γ2 (γ1 − 1)] εn+1 + c1c2 (γ1 − γ2) (εn
1 − εn

2 )}−1,(A17)

τn+1
2 = (γ2 − 1) {γ1 εn+1τn+1
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− c1

[
(γ1 − 1) (τn

1 − τn
2 ) εn+1 + (εn

1 − εn
2 ) τn+1

]
}

×{[c2γ1 (γ2 − 1) + c1γ2 (γ1 − 1)] εn+1 + c1c2 (γ1 − γ2) (εn
1 − εn

2 )}−1.(A18)

In the case that |γ1 − γ2| → 0, direct algebraic manipulations show that
Eqs. (A14)–(A18) reduce to the previous, equal-γ case.

A.3 The Fully Explicit Model

The “Fully Explicit” formulation uses P1 = pn
1 and P2 = pn

2 in Eq. (46).
The algebra required to evaluate a closed-form solution is complicated, but
symbolic manipulation software can be used to obtain expressions for the
solution in this case. One must distinguish between the case of identical
gases (i.e., γ1 = γ2 ≡ γ) and non-identical gases (i.e., γ1 6= γ2). In the
latter case, the solution is complicated by the fact that the pressure satisfies
a quadratic equation; consequently, in that case there are two algebraically
admissible solutions.

A.3.1 Fully explicit, identical gases

When γ1 = γ2 ≡ γ, the solution is given as:

p = (γ − 1) εn+1/τn+1 , (A19)

εn+1
1 =

εn+1 [εn+1 + pn
2τ

n+1 + c2 (εn
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )]

(c1 + c2) εn+1 + (c1pn
2 + c2pn

1 ) τn+1
, (A20)

εn+1
2 =

εn+1 [εn+1 + pn
1τ

n+1 − c1 (εn
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )]

(c1 + c2) εn+1 + (c1pn
2 + c2pn

1 ) τn+1
, (A21)

τn+1
1 =

τn+1 [εn+1 + pn
2τ

n+1 + c2 (εn
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )]

(c1 + c2) εn+1 + (c1pn
2 + c2pn

1 ) τn+1
, (A22)

τn+1
2 =

τn+1 [εn+1 + pn
1τ

n+1 − c1 (εn
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )]

(c1 + c2) εn+1 + (c1pn
2 + c2pn

1 ) τn+1
. (A23)

A.3.2 Fully explicit, non-identical gases, first solution

When γ1 6= γ2, one solution is given as:

p =
1

2

[
(c1 + c2) τn+1

]−1

×
{

[ c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1
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− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+ c1c2 (γ1 − γ2) (εn
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )

−
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

+c2 (γ1 − γ2) [pn
1τ

n
1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )]}2

]1/2}
,(A24)

εn+1
1 =

1

2
[ c1 (c1 + c2) (γ1 − γ2)]

−1

×
{
− (γ2 − 1) (c1 + c2) εn+1−[c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+ c1 (γ1 − γ2)
[
εn+1 + c2 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

−
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 − c1(ε

n
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )
]
}2
]1/2}

,(A25)

εn+1
2 =

1

2
[ c2 (c1 + c2) (γ1 − γ2)]

−1

×
{

(γ1 − 1) (c1 + c2) εn+1 + [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+c2 (γ1 − γ2)
[
εn+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

−
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

+ (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

−c2(γ1 − γ2)
[
pn

1τ
n+1
1 +c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

,(A26)

τn+1
1 =

1

2
[ c1 (γ1 − γ2) (c1p

n
2 + c2p

n
1 )]−1

×
{

[ c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1 + (γ1 − 1) (c1p
n
2 + c2p

n
1 ) τn+1
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+c1 (γ1 − γ2)
[
pn

2τ
n+1 + c2 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 −c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

,(A27)

τn+1
2 =−1

2
[ c2 (γ1 − γ2) (c1p

n
2 + c2p

n
1 )]−1

×
{
[c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1 + (γ2 − 1) (c1p

n
2 + c2p

n
1 ) τn+1

−c2 (γ1 − γ2)
[
pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 −c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

.(A28)

A.3.3 Fully explicit, non-identical gases, second solution

When γ1 6= γ2, a second solution is given as:

p =
1

2

[
(c1 + c2) τn+1

]−1

×
{

[c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

+ [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+ c1c2 (γ1 − γ2) (εn
1 − εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )

+
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) [c2p
n
1 + c1p

n
2 ] τn+1

+c2 (γ1 − γ2) [pn
1τ

n
1−c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )]}2

]1/2}
,(A29)
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εn+1
1 =

1

2
[ c1 (c1 + c2) (γ1 − γ2)]

−1

×
{
− (γ2 − 1) (c1 + c2) εn+1 − [c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+c1 (γ1 − γ2)
[
εn+1 + c2 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 −c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

,(A30)

εn+1
2 =

1

2
[ c2 (c1 + c2) (γ1 − γ2)]

−1

×
{
(γ1 − 1) (c1 + c2) εn+1 + [c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+c2 (γ1 − γ2)
[
εn+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

−
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c2p
n
1 + c1p

n
2 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 −c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

,(A31)

τn+1
1 =

1

2
[ c1 (γ1 − γ2) (c2p

n
1 + c1p

n
2 )]−1

×
{

[ c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1 + (γ1 − 1) (c2p
n
1 + c1p

n
2 ) τn+1

+c1 (γ1 − γ2)
[
pn

2τ
n+1 + c2 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

−
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 − pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c2p
n
1 + c1p

n
2 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 −c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

,(A32)

τn+1
2 =

1

2
[ c2 (γ1 − γ2) (c1p

n
2 + c2p

n
1 )]−1
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×
{
− [ c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1 − (γ2 − 1) (c1p

n
2 + c2p

n
1 ) τn+1

+c2 (γ1 − γ2)
[
pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+
[
4c2 (γ1 − γ2) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

×
[
εn+1 + pn

1τ
n+1 − c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]

+{− [c1 (γ1 − 1) + c2 (γ2 − 1)] εn+1

− (γ2 − 1) (c1p
n
2 + c2p

n
1 ) τn+1

+c2(γ1 − γ2)
[
pn

1τ
n+1
1 −c1 (εn

1 − εn
2 + pn

1τ
n
1 − pn

2τ
n
2 )
]
}2
]1/2}

.(A33)

A.4 The Thermodynamically Consistent Model

The “Thermodynamically Consistent” assigns the pressure in Eq. (46) to be
the arithmetic average of the fully explicit and fully implicit values: P1 =
1
2

(
pn

1 + pn+1
1

)
, and P2 = 1

2

(
pn

2 + pn+1
2

)
. Symbolic manipulation software can

be used to obtain closed-form expressions for the solution in this case. One
must again distinguish between the case of identical gases (i.e., γ1 = γ2 ≡ γ)
and non-identical gases (i.e., γ1 6= γ2): there are two solutions in the latter
case, both of which are more complicated than in the fully explicit case above.

A.4.1 Thermodynamically consistent, identical gases

When γ1 = γ2 ≡ γ, the solution is given as:

p = (γ − 1) εn+1/τn+1 , (A34)

εn+1
1 =

(
εn+1/τn+1

){[
(γ + 1) (c1 + c2) εn+1+ (c2p

n
1 + c1p

n
2 ) τn+1

]}−1

×
{[

(γ + 1) εn+1 + pn
2τ

n+1
]
τn+1

+c2

[
(γ − 1) (τn

1 − τn
2 ) εn+1 + (2εn

1 − 2εn
2 + pn

1τ
n
1 − pn

2τ
n
2 ) τn+1

]}
,(A35)

εn+1
2 =

(
εn+1/τn+1

){[
(γ + 1) (c1 + c2) εn+1+ (c2p

n
1 + c1p

n
2 ) τn+1

]}−1

×
{[

(γ + 1) εn+1 + pn
1τ

n+1
]
τn+1

−c1

[
(γ − 1) (τn

1 − τn
2 ) εn+1 + (2εn

1 − 2εn
2 + pn

1τ
n
1 − pn

2τ
n
2 ) τn+1

]}
,(A36)

τn+1
1 =

[
(γ + 1) (c1 + c2) εn+1 + (c2p

n
1 + c1p

n
2 ) τn+1

]−1

×{
[
(γ + 1) εn+1 + pn

2τ
n+1

]
τn+1
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+c2

[
(γ − 1) (τn

1 − τn
2 ) εn+1 + (2εn

1 − 2εn
2 + pn

1τ
n
1 − pn

2τ
n
2 ) τn+1

]
} ,(A37)

τn+1
2 =

[
(γ + 1) (c1 + c2) εn+1 + (c2p

n
1 + c1p

n
2 ) τn+1

]−1

×{
[
(γ + 1) εn+1 + pn

1τ
n+1

]
τn+1

−c1

[
(γ − 1) (τn

1 − τn
2 ) εn+1 + (2εn

1 − 2εn
2 + pn

1τ
n
1 − pn

2τ
n
2 ) τn+1

]
} .(A38)

A.4.2 Thermodynamically consistent, non-identical gases, first so-
lution

When γ1 6= γ2, one solution is given as:

p =
1

2

{
c1c2 (γ1 − γ2) (τn

1 − τn
2 )− [c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

}−1

×
{
− [c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

+ [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

− c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )

+
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1 − c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{[c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn1

+ c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
, (A39)

εn+1
1 =

1

2c1 (γ1 − γ2)
{c1c2 (γ1 − γ2) (τn

1 − τn
2 )

− [c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1}−1

×
{
{[ c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+ [c1 (γ2 + 1) + c2 (γ1 + 1)] (γ2 − 1) εn+1} τn+1

− c1 (γ1 − γ2) [ 2c2 (γ2 − 1) (τn
1 − τn

2 ) εn+1

+ (γ2 + 1) τn+1εn+1 + c2 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) τn+1 ]

+τn+1
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{ [c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

+ [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1
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+ c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
,(A40)

εn+1
2 =− 1

2c2 (γ1 − γ2)
{c1c2 (γ1 − γ2) (τn

1 − τn
2 )

− [c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1}−1

×
{
{[c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+ [c1 (γ2 + 1) + c2 (γ1 + 1)] (γ1 − 1) εn+1} τn+1

−c2 (γ1 − γ2) [ 2c1 (γ1 − 1) (τn
1 − τn

2 ) εn+1

− (γ1 + 1) τn+1εn+1 + c1 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) τn+1 ]

+τn+1
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[ c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{[ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
,(A41)

τn+1
1 =

1

2c1 (γ1 − γ2)
(c2p

n
1 + c1p

n
2 )−1

×
{
(γ1 − 1) (c1p

n
2 + c2p

n
1 ) τn+1

+ [c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

+c1 (γ1 − γ2) [ pn
2τ

n+1 + c2 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) ]

+
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+ { [ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
, (A42)

τn+1
2 =− 1

2c2 (γ1 − γ2)
(c2p

n
1 + c1p

n
2 )−1

×
{
(γ2 − 1) (c1p

n
2 + c2p

n
1 ) τn+1

+ [c1 (γ1 − 1) (1 + γ2) + c2 (γ1 + 1) (γ2 − 1)] εn+1
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−c2 (γ1 − γ2) [ pn
1τ

n+1 − c1 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) ]

+
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{ [ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
. (A43)

A.4.3 Thermodynamically consistent, non-identical gases, second
solution

When γ1 6= γ2, the second solution is given as:

p =−1

2

{
c1c2 (γ1 − γ2) (τn

1 − τn
2 )− [c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

}−1

×
{

[ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+ c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )

+
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×
{
[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1− c1c2 (γ1 − γ2) (τn

1 − τn
2 )
}

+{ [ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn1

+ c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
, (A44)

εn+1
1 =

1

2c1 (γ1 − γ2)
{c1c2 (γ1 − γ2) (τn

1 − τn
2 )

− [c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1}−1

×
{
{[ c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+ [ c1 (γ2 + 1) + c2 (γ1 + 1)] (γ2 − 1) εn+1} τn+1

−c1 (γ1 − γ2) [ 2c2 (γ2 − 1) (τn
1 − τn

2 ) εn+1

+ (γ2 + 1) τn+1εn+1 + c2 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) τn+1 ]

−τn+1
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1
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−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{ [ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+ c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
, (A45)

εn+1
2 =− 1

2c2 (γ1 − γ2)
{c1c2 (γ1 − γ2) (τn

1 − τn
2 )

− [c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1}−1

×
{
{[c2 (γ1 − 1) pn

1 + c1 (γ2 − 1) pn
2 ] τn+1

+ [c1 (γ2 + 1) + c2 (γ1 + 1)] (γ1 − 1) εn+1} τn+1

−c2 (γ1 − γ2) [ 2c1 (γ1 − 1) (τn
1 − τn

2 ) εn+1

− (γ1 + 1) τn+1εn+1 + c1 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) τn+1 ]

−τn+1
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{ [ c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [ c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+ c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
, (A46)

τn+1
1 =

1

2c1 (γ1 − γ2)
(c2p

n
1 + c1p

n
2 )−1

×
{
(γ1 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

+ [c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

+c1 (γ1 − γ2) [ pn
2τ

n+1 + c2 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) ]

−
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{[c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

−τn+1 [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ]

+c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
, (A47)

τn+1
2 =− 1

2c2 (γ1 − γ2)
(c2p

n
1 + c1p

n
2 )−1
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×
{
(γ2 − 1) (c2p

n
1 + c1p

n
2 ) τn+1

+ [c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

−c2 (γ1 − γ2) [ pn
1τ

n+1 − c1 (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 ) ]

−
[
4 (γ1 − 1) (γ2 − 1) (c2p

n
1 + c1p

n
2 ) εn+1

×{[c1 (γ2 + 1) + c2 (γ1 + 1)] τn+1

−c1c2 (γ1 − γ2) (τn
1 − τn

2 )}
+{[c1 (γ1 − 1) (γ2 + 1) + c2 (γ1 + 1) (γ2 − 1)] εn+1

− [c2 (γ1 − 1) pn
1 + c1 (γ2 − 1) pn

2 ] τn+1

+c1c2 (γ1 − γ2) (2εn
1 − 2εn

2 + pn
1τ

n
1 − pn

2τ
n
2 )}2

]1/2}
. (A48)
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Appendix B: Jacobian Elements for the In-

stantaneous Equilibration, Polytropic Gas Model

In this appendix we provide explicit formulae for the elements of the Jaco-
bian matrix used in the Newton iteration for the solution of Eqs. (50)–(53)
describing the instantaneous pressure equilibration model. The elements of
this matrix depend on the modeling choice made in describing the pressure
term Pk in Eq. (53).

The first two rows of the Jacobian are independent of the EOS. The
elements of these two rows are given by:

∂f1

∂x1

= c1 ,
∂f1

∂x2

= 0 ,
∂f1

∂x3

= c2 ,
∂f1

∂x4

= 0 , (B1)

∂f2

∂x1

= 0 ,
∂f2

∂x2

= c1 ,
∂f2

∂x3

= 0 ,
∂f2

∂x4

= c2 , (B2)

The fourth row of the Jacobian, while independent of the closure model,
depends on the EOS through the pressure term:

∂f4

∂x1

=
∂P1

∂x1

=
∂P1

∂τ1

, (B3)

∂f4

∂x2

=
∂P1

∂x2

=
∂P1

∂ε1

, (B4)

∂f4

∂x3

=−∂P2

∂x3

= −∂P2

∂τ2

, (B5)

∂f4

∂x4

=−∂P2

∂x4

= −∂P2

∂ε2

. (B6)

For the (incomplete) polytropic EOS,

P(τ, ε) ≡ (γ − 1) ε τ−1 , (B7)

these terms can be evaluated explicitly:

∂f4

∂x1

=− (γ1 − 1) x2 x−2
1 = − (γ1 − 1) ε1 τ−2

1 , (B8)

∂f4

∂x2

= (γ1 − 1) x−1
1 = (γ1 − 1) τ−1

1 , (B9)

∂f4

∂x3

= (γ2 − 1) x4 x−2
3 = (γ2 − 1) ε2 τ−2

2 , (B10)

∂f4

∂x4

=− (γ2 − 1) x−1
3 = − (γ2 − 1) τ−1

2 . (B11)
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The third row of the Jacobian depends on both the closure model and the
EOS through the pressure term. The modeling choice of when the pressure
is evaluated affects the specific form assumed by the Jacobian element in this
row.

B.2 The Fully Implicit Model

In the “Fully Implicit” case, P1 = pn+1
1 = P1(τ

n+1
1 , εn+1

1 ) and P2 = pn+1
2 =

P2(τ
n+1
2 , εn+1

2 ), so that

f3 ≡ εn+1
1 − εn

1 + P1(τ
n+1
1 , εn+1

1 )(τn+1
1 − τn

1 )

−
[
εn+1
2 − εn

2 + P2(τ
n+1
2 , εn+1

2 )(τn+1
2 − τn

2 )
]

(B12)

⇒ f3 ≡ x2 − εn
1 + P1(x1, x2)(x1 − τn

1 )

− [ x4 − εn
2 + P2(x3, x4)(x3 − τn

2 ) ] . (B13)

The corresponding Jacobian elements are:

∂f3

∂x1

=
∂P1

∂x1

(x1 − τn
1 ) + P1(x1, x2)

=
∂f4

∂x1

(x1 − τn
1 ) + P1(x1, x2) , (B14)

∂f3

∂x2

= 1 +
∂P1

∂x2

(x1 − τn
1 )

= 1 +
∂f4

∂x2

(x1 − τn
1 ) , (B15)

∂f3

∂x3

= − ∂P2

∂x3

(x3 − τn
2 )− P2(x3, x4)

=
∂f4

∂x3

(x3 − τn
2 )− P2(x3, x4) , (B16)

∂f3

∂x4

=−1− ∂P2

∂x4

(x3 − τn
2 )

=−1 +
∂f4

∂x4

(x3 − τn
2 ) . (B17)
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B.3 The Fully Explicit Model

For the “Fully Explicit” case, P1 = pn
1 and P2 = pn

2 , independent of the
updated state vector x, so that

f3 ≡ εn+1
1 − εn

1 + pn
1 (τn+1

1 − τn
1 )

−
[
εn+1
2 − εn

2 + pn
2 (τn+1

2 − τn
2 )
]

, (B18)

⇒ f3 ≡ x2 − εn
1 + pn

1 (x1 − τn
1 )

− [ x4 − εn
2 + pn

2 (x3 − τn
2 ) ] . (B19)

The corresponding Jacobian elements are:

∂f3

∂x1

= pn
1 , (B20)

∂f3

∂x2

= 1 , (B21)

∂f3

∂x3

=−pn
2 , (B22)

∂f3

∂x4

=−1 . (B23)

B.3 The Thermodynamically Consistent Model

For the “Thermodynamically Consistent” model, P1 = 1
2

(
pn

1 + pn+1
1

)
and

P2 = 1
2

(
pn

2 + pn+1
2

)
, which imply

f3 ≡ εn+1
1 − εn

1 +
1

2

(
pn

1 + P1(τ
n+1
1 , εn+1

1 )
)

(τn+1
1 − τn

1 )

−
[
εn+1
2 − εn

2 +
1

2

(
pn

2 + P2(τ
n+1
2 , εn+1

2 )
)

(τn+1
2 − τn

2 )
]

, (B24)

⇒ f3 ≡ x2 − εn
1 +

1

2
(pn

1 + P1(x1, x2)) (x1 − τn
1 )

−
[
x4 − εn

2 +
1

2
(pn

2 + P2(x3, x4)) (x3 − τn
2 )
]

. (B25)

The corresponding Jacobian elements are:

∂f3

∂x1

=
1

2

∂P1

∂x1

(x1 − τn
1 ) +

1

2
(pn

1 + P1(x1, x2))
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=
1

2

∂f4

∂x1

(x1 − τn
1 ) +

1

2
(pn

1 + P1(x1, x2)) , (B26)

∂f3

∂x2

= 1 +
1

2

∂P1

∂x2

(x1 − τn
1 )

= 1 +
1

2

∂f4

∂x2

(x1 − τn
1 ) , (B27)

∂f3

∂x3

=−1

2

∂P2

∂x3

(x3 − τn
2 )− 1

2
(pn

2 + P2(x3, x4))

=
1

2

∂f4

∂x3

(x3 − τn
2 )− 1

2
(pn

2 + P2(x3, x4)) , (B28)

∂f3

∂x4
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2

∂P2
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(x3 − τn
2 )

=−1 +
1

2

∂f4

∂x4

(x3 − τn
2 ) , (B29)
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100 200 400 800 A σ
ρ 8.56× 10−3 4.30× 10−3 2.16× 10−3 1.09× 10−3 0.83 0.99
p 8.62× 10−3 4.32× 10−3 2.19× 10−3 1.09× 10−3 0.83 0.99
e 2.48× 10−2 1.27× 10−2 6.21× 10−3 3.12× 10−3 2.52 1.00
u 2.30× 10−2 1.16× 10−2 5.32× 10−3 2.71× 10−3 2.75 1.04

Table 1: L1 norms of the difference between exact and computed Sod prob-
lem results, computed pointwise at t = 0.2, for the given variables with the
indicated number of points on the unit interval. The prefactor A and con-
vergence rate σ are least-squares fits to the relation given in Eq. (82). The
values of σ close to unity suggest first-order convergence.
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100 200 400 800 A σ
ρ 1.07× 10−2 5.22× 10−3 2.61× 10−3 1.35× 10−3 1.04 1.00
p 1.70× 10−2 8.23× 10−3 4.12× 10−3 2.13× 10−3 1.66 1.00
e 4.37× 10−2 3.07× 10−2 1.03× 10−2 5.49× 10−3 4.22 1.00
u 3.12× 10−2 1.42× 10−2 7.00× 10−3 3.91× 10−3 2.99 1.00

Table 2: L1 norms of the difference between exact and computed modified
Sod problem results, computed pointwise at t = 0.2, for the given variables
with the indicated number of points on the unit interval. The prefactor A
and convergence rate σ are least-squares fits to the relation given in Eq. (82).
The values of σ close to unity suggest first-order convergence.

48



256 512 1024 A σ
ρ 2.09× 10−2 1.08× 10−2 5.49× 10−3 2.27 0.97
p 6.77× 10−3 3.34× 10−3 1.80× 10−3 0.70 0.96
e 2.21× 10−3 1.18× 10−3 5.78× 10−4 0.24 0.97
u 3.84× 10−3 2.05× 10−3 9.90× 10−4 0.45 0.98

Table 3: L1 norms of the difference between exact and computed moving-
shock problem results, computed pointwise at t = 0.5, for the given variables
with the indicated number of points on the unit interval. The prefactor A
and convergence rate σ are least-squares fits to the relation given in Eq. (82).
The values of σ close to unity suggest first-order convergence.
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0 < x < 0.1 0.1 < x < 0.5 0.5 < x < 1
γ 1.35 1.35 5.0
ρ 2.76470588235 1.0 1.9
e 4.59548599884 2.85714285714 0.131578947368
p 4.44680851064 1.0 1.0
u 1.48327021770 0.0 0.0

Table 4: High-precision initial conditions for the shock-contact problem. This
configuration corresponds to a Mach number of 2.0 and an initial shock speed
of uS = 2.32379000772, so that the shock hits the material interface at t =
0.172132593165.
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274 549 1099 2199 A σ
ρ 1.95× 10−2 9.61× 10−3 4.98× 10−3 2.49× 10−3 3.61 0.99
p 6.98× 10−2 3.09× 10−2 1.61× 10−2 8.05× 10−3 15.6 1.03
e 2.46× 10−2 1.11× 10−2 5.59× 10−3 3.07× 10−3 4.66 1.00
u 1.22× 10−2 7.01× 10−3 3.71× 10−3 1.74× 10−3 1.80 0.93

Table 6: L1 norms of the difference between exact and computed shock-
contact problem results, computed pointwise at t = 0.25, for the given vari-
ables with the indicated number of points on the unit interval. The prefactor
A and convergence rate σ are least-squares fits to the relation given in Eq. 82.
The values of σ close to unity suggest first-order convergence.
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100 200 400 800 A σ
p (×10−6) 7.15 3.63 1.84 9.19× 10−1 675 0.99
ρ 3.30 2.76 1.40 6.98× 10−1 133 0.77
e (×10−3) 2.12 1.02 5.48 2.68× 10−1 196 0.99
u 6.43 3.06 1.64 7.92× 10−1 623 1.00

Table 7: L1 norms of the difference between exact and computed water-air
shock tube problem results, computed pointwise, for the given variables with
the indicated number of points on the unit interval. Note the normalization
factor for the pressure and SIE errors. The prefactor A and convergence rate
σ are least-squares fits to the relation given in Eq. (82). The values of σ close
to unity suggest first-order convergence, except for the density, which has an
inconsistently low error at the coarsest resolution.
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Figure 1: Schematic of the idealized mixed cell, which has material 1 (to the
left) separated from material 2 (to the right).
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Figure 2: Schematic of the pressure associated with the 1-D Riemann prob-
lem used to model the dynamics of the two-material mixed cell. The bottom
shows the initial pressure, i.e., at time tn, of materials 1 (left) and 2 (right),
while the top figure is the updated solution, i.e., at time tn+1. The tn+1 state
exhibits, from left to right, the left tn value, the leading left-most Riemann
wave (WL, in this case corresponding to a rarefaction fan), the contact dis-
continuity (W ∗), the leading right-most Riemann wave (WR, in this case
corresponding to a shock), and the right tn quantity.
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Figure 3: Computed results (solid line) for the Sod shock tube problem
for 100 zones on [0, 1] at t = 0.2. The difference (dotted line) between
the computed and exact (dashed line) solutions is plotted against the right
ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol •.
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Figure 4: Plot of the L1 norm of the difference between the computed results
and exact solution at t = 0.2 for the Sod shock tube problem. The values
of the norm for the 100-, 200-, 400-, and 800-zone meshes are shown for the
pressure (◦), density (2), SIE (�), and velocity (4). The curve fit parameters
corresponding to these data are given in Table 1.
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Figure 5: Time-history plots for the Sod shock tube problem of the (from
left to right) pressure, the mass density, and SIE of the two materials in
the mixed cell, for the (from top to bottom) 100-, 200-, 400-, and 800-cell
results. The solid line indicates the left material (material 1) and a dotted
line represents the right material (material 2).
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Figure 6: Computed results (solid line) for the modified Sod shock tube
problem for 100 zones on [0, 1] at t = 0.2. The difference (dotted line)
between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values corresponding to the individual materials in
the mixed cell are denoted by the symbol •.
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Figure 7: Plot of the L1 norm of the difference between the computed results
and exact solution at t = 0.2 for the modified Sod shock tube problem. The
values of the norm for the 100-, 200-, 400-, and 800-zone meshes are shown
for the pressure (◦), density (2), SIE (�), and velocity (4). The curve fit
parameters corresponding to these data are given in Table 2.
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Figure 8: Time-history plots for the modified Sod shock tube problem of the
(from left to right) pressure, the mass density, and SIE of the two materials
in the mixed cell, for the (from top to bottom) 100-, 200-, 400-, and 800-cell
results. The solid line indicates the left material (material 1) and a dotted
line represents the right material (material 2).
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Figure 9: Computed results (solid line) for the moving shock for 256 zones
on [0, 2] at t = 0.5. The difference (dotted line) between the computed and
exact (dashed line) solutions is plotted against the right ordinate. The values
corresponding to the individual materials in the mixed cell are denoted by
the symbol •.
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Figure 10: Plot of the L1 norm of the difference between the computed
results and exact solution at t = 0.5 for the moving shock problem. The
values of the norm for the 256-, 512-, and 1024-zone meshes are shown for
the pressure (◦), density (2), SIE (�), and velocity (4). The curve fit
parameters corresponding to these data are given in Table 3.
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Figure 11: Time-history plots for the moving shock problem of the (from
left to right) pressure, the mass density, and SIE of the two materials in the
mixed cell, for the (from top to bottom) 256-, 512-, and 1024-cell results. The
solid line indicates the left material (material 1) and a dotted line represents
the right material (material 2).
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Figure 12: Computed results (solid line) for the shock-contact problem at
t = 0.25 for 274 zones initially on [−0.37, 1]. The difference (dotted line)
between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values corresponding to the individual materials in
the mixed cell are denoted by the symbol •.
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Figure 13: Plot of the L1 norm of the difference between the computed
results and exact solution at t = 0.25 for the shock-contact problem. The
values of the norm for the 100-, 200-, 400-, and 800-zone meshes are shown
for the density (2), pressure (◦), SIE (�), and velocity (4). The curve fit
parameters corresponding to these data are given in Table 6.
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Figure 14: Close-up of time-history plots for the shock-contact problem of the
(from left to right) pressure, the mass density, and SIE of the two materials in
the mixed cell, for the (from top to bottom) 274-, 549-, 1099-, and 2199-cell
results. The solid line indicates the left material (material 1) and a dotted
line represents the right material (material 2).
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Figure 15: Computed results (solid line) for the water-air shock tube problem
for 100 zones on [0, 1] at t = 2.24×10−4. The difference (dotted line) between
the computed and exact (dashed line) solutions is plotted against the right
ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol •.
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Figure 16: Plot of the L1 norm of the difference between the computed results
and exact solution at t = 2.24× 10−4 for the water-air shock tube problem.
The values of the norm for the 100-, 200-, 400-, and 800-zone meshes are
shown for the pressure (◦), density (2), SIE (�), and velocity (4). In this
plot, the values of the pressure error are divided by 106 and the SIE errors
are divided by 103. The curve fit parameters corresponding to these data are
given in Table 7.
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Figure 17: Time-history plots for the water-air shock tube problem of the
(from left to right) pressure, the mass density, and SIE of the two materials
in the mixed cell, for the (from top to bottom) 100-, 200-, 400-, and 800-cell
results. The solid line indicates the left material (material 1) and a dotted
line represents the right material (material 2).
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